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Phase diagram and critical exponents of a Potts gauge glass
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The two-dimensionalq-state Potts model is subjected to aZq symmetric disorder that allows for the exis-
tence of a Nishimori line. Atq52, this model coincides with the6J random-bond Ising model. Forq.2,
apart from the usual pure- and zero-temperature fixed points, the ferro/paramagnetic phase boundary is con-
trolled by two critical fixed points: a weak disorder point, whose universality class is that of theferromagnetic
bond-disordered Potts model, and a strong disorder point which generalizes the usual Nishimori point. We
numerically study the caseq53, tracing out the phase diagram and precisely determining the critical expo-
nents. The universality class of the Nishimori point is inconsistent with percolation on Potts clusters.
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During the last decade, the study of disordered syste
has attracted much interest. This is true in particular in t
dimensions, where the possible types of critical behavior
the corresponding pure models can be classified using
formal field theory@1#. Recently, similar classification issue
for disordered models have been addressed through the s
of various random matrix ensembles@2#, but many funda-
mental questions remain open.

An important category of two-dimensional~2D! disor-
dered systems is given by models where the disorder cou
to the local energy density. Two paradigmatic members
this class are the6J random-bond Ising model, and th
q-state ferromagnetic random-bond Potts model. The mo
to be studied in the present paper can be thought of a
interpolation between these two members; we shall there
begin by recalling some of their basic properties.

The random-bond Ising model~RBIM! is defined by the
energy functional

HIsing52(
^ i , j &

Ji j d~Si ,Sj !, ~1!

where the sum is over the edges of the square latticeSi
561 are Ising spins, andd(.,.) is theKronecker delta func-
tion. The random bonds take the valuesJi j 561 with prob-
ability p, respectively, 12p. The salient feature of this
model is that it marries disorder with frustration, leading
the possibility of spin glass order.

Its phase diagram is generally believed to be as in F
1~a! @3#. The boundary~FP! between the ferromagnetic an
the paramagnetic phases is controlled by three fixed po
The attractive fixed points at either end of the phase bou
ary are, respectively, the critical point of the pure Isi
model and a zero-temperature fixed point. Between these
we find the multicritical pointN, intersecting the so-called
Nishimori line eb5(12p)/p @4#. On this line, the replicated
version of the model possesses a localZ2 gauge symmetry
that, among other things, allows for exactly computing
internal energy and for establishing the pairwise equality
correlation functions
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@^Si 1
Si 2

•••Si k
&2n21#5@^Si 1

Si 2
•••Si k

&2n#, ~2!

where^•••& denotes the thermal and@•••# the disorder av-
erage. Since the Nishimori line is also invariant under ren
malization group~RG! transformations@3#, its intersectionN
with the FP boundary must be a fixed point. However,
widespread belief that the corresponding universality clas
of the percolation type has recently been refuted on the b
of numerical evidence@5#.

The other model of special interest to us is the rando
bond Potts model~RBPM!, which is also defined by Eq.~1!,
except that the spins now takeq different values, Si
51,2, . . . ,q. The most well-studied case is that of ferroma
netic bondsJ1 ,J2.0, each taken with probability 1/2, an
with R[J2 /J1>1 adjusting the disorder strength.

In contradistinction to the Nishimori point, the fixed poin
of this model is situated at weak disorder. Forq.2 the dis-
order is relevant@6#, and the corresponding line of fixe
points tends to the one of the pure Ising model in the lim
q→2. As a consequence, the critical exponents can be c
puted perturbatively in a (q22) expansion@7#. According to
the RG picture, forq.2, any small amount of disorde
should induce a flow towards the random fixed point. Th
this is also true forq.4, where the phase transition in th
pure model is of the first order, is the content of t
Aizenman-Wehr theorem@8#.

In this paper, we shall consider the model

H52(
^ i , j &

d (q)~Si2Sj1Ji j !, ~3!

FIG. 1. Phase diagram of the6J random-bond Ising model~a!
and theq.2 state Potts gauge glass~b!.
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where Si51,2, . . . ,q, and d (q)(x)51 if x50 modq and
zero otherwise. The randomness now takes the form o
local ‘‘twist’’ Ji j , which is clearly a more severe type o
disorder than simple bond randomness. The variablesJi j are
taken from the distribution

P~Ji j !5@12~q21!p#d~Ji j !1p(
J51

q21

d~Ji j 2J!, ~4!

with 0<p<1/(q21) controlling the strength of the random
ness. We shall refer to this model, which was originally
troduced in Ref.@9#, as the Potts gauge glass~PGG!. The
particular form of the randomness ensures the existence
Nishimori line ~see below!. For q52, the PGG reduces to
the RBIM, and forp51/q it was studied analytically in@10#.
It is also connected to the RBPM: To wit, whenq.2, the
pure Potts model (p50) should beunstable to a small
amount of randomness, meaning that the RG flow canno
as indicated on Fig. 1~a!. Instead, we are forced to assum
the existence of a new fixed pointF, intermediary between
the pure model and the Nishimori point@see Fig. 1~b!#. But
whenever (q22), and hence the value ofp at F, is suffi-
ciently small, frustration effects are negligible, and w
should flow to thesamerandom fixed point as in the RBPM
For reasons of continuity, we expect this argument to h
true also for higher values ofq.

The expression of the Nishimori line was obtained in R
@9#, but since our notation is slightly different we shall repe
the argument here. We first re-express the disorder distr
tion as

P~Ji j !5peKd(q)(Ji j ) with K5 log@1/p2~q21!#. ~5!

Consider then the disorder averaged internal energy

E5N(
$Ji j %

S )̂
i j &

eKd(q)(Ji j )D($Si %
d (q)~Si2Sj1Ji j !e

2bH

(
$Si %

e2bH
,

~6!

whereN521/(q211eK)2N, N being the number of site
of the square lattice.H is then invariant under the gaug
transformationSi→Si2s i ,Ji j →Ji j 1s i2s j , thoughP(Ji j )
is not. Still, E is invariant since we sum over all configur
tions of the disorder. Then, averaging over all the poss
gauge transformations, we get

E5Nq2N(
$Ji j %

(
$s i %

S )̂
i j &

eKd (q)(Ji j 1s i2s j )D

3

(
$Si %

d (q)~Si2Sj1Ji j !e
2bH

(
$Si %

)
^ i 8 j 8&

ebd (q)(Si 82Sj 81Ji 8 j 8)

. ~7!

ImposingK5b, there is a remarkable simplification
02611
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E5Nq2N(
$Ji j %

(
$Si %

d (q)~Si2Sj1Ji j !e
2bH

5Nq2N
]

]b
(
$Si %

~eb1q21!2N5
22Neb

q211eb
. ~8!

Thus,E is regular, and Eq.~5! with K5b defines the gener
alized Nishimori line.

Normalized two-point functions are defined by

^SiSj&5~q21!21
„q^d (q)~Si2Sj !&21…. ~9!

Let us now recall how Eq.~2! can be derived forq52.
We considern51 for simplicity. Using the trivial iden-
tities d (q)(DS2Ds)5( l 50

q21d (q)(DS2 l )d (q)(Ds1 l ) and
( l 50

q21d (q)(DS2 l )51, one readily establishes tha
2d (2)(DS2Ds)215„2d (2)(DS)21…„2d (2)(Ds)21…
and, using the same gauge transformation as before,

@2^d (2)~Si2Sj !&21#5@~2^d (2)~Si2Sj !&21!2#.
~10!

This relies crucially on the fact that the above trivial iden
ties generate only two terms, and for generalq we do not
expect simple relations such as Eq.~2!.1

We now turn to our numerical results. Random trans
matrices in the Fortuin-Kasteleyn~FK! representation@11#
have been a very powerful tool for studying the RBPM@12#.
Unfortunately, the random twist variablesJi j present in Eq.
~3! complicate the definition of the FK clusters: only tho
clusters are allowed for which(g Ji j 50 modq for any path
g within the cluster@13#. It is not obvious how this constrain
can be generalized toreal values ofq, and even for integerq
keeping track of the necessary local information wou
greatly increase the number of basis states needed. We
therefore found it more convenient to write the transfer m
trices directly in the spin basis. We work atq53 throughout,
but expect our conclusions to extend to arbitraryq.2.

As we have shown in an earlier publication@14#, the
phase diagram can be traced out by investigating the ef
tive central charge. To this end we have computed the
energy f L

(p)5 ln Z (p)/LM on strips of various widthsL and
practically infinite length,M5105. The ~effective! central
chargec can then be obtained as the universal coefficien
the finite-size correction to the free energy for period
boundary conditions@15#

f L
(p)5 f `

(p)1
cp

6L2 1•••. ~11!

According to Zamolodchikov’sc theorem@16#, here applied
to a nonunitary theory, the effective central chargeincreases
along the RG flows and coincides with the~true! central

1A simple relation for a chiral-type correlator was established
Ref. @9#, but in terms of Eq.~9! this does not lead to degeneracy
the multiscaling spectrum.
3-2
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TABLE I. Parametrization of the ferro/paramagnetic phase boundary.

L53,4 L54,5 L52,3,4 L53,4,5
p b c b c b c b c

0.01 1.0521~5! 0.76825~3! 1.0520~5! 0.78074~9! 1.0520~5! 0.79460~6! 1.0520~5! 0.7987~3!

0.02 1.1061~5! 0.76874~6! 1.1061~5! 0.7815~2! 1.1061~5! 0.7953~1! 1.1061~5! 0.7998~6!

0.03 1.1692~5! 0.76907~9! 1.1691~5! 0.7816~2! 1.1692~5! 0.7957~2! 1.1691~5! 0.7997~6!

0.04 1.244~1! 0.7685~1! 1.245~1! 0.7822~7! 1.244~1! 0.7951~3! 1.245~1! 0.8020~17!

0.05 1.336~1! 0.7663~3! 1.337~1! 0.7799~9! 1.336~1! 0.7925~6! 1.338~1! 0.7995~25!

0.06 1.453~2! 0.7620~3! 1.456~2! 0.7739~11! 1.454~2! 0.7882~6! 1.456~2! 0.7911~30!
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charge at the fixed points. The FP boundary~cf. Fig. 1! can
be traced by identifying the maximum ofc as a function ofT,
for various fixed values ofp.

Since the randomness is strong, and since the fits to
~11! must be based on at least two different sizesL to elimi-
nate the nonuniversal quantityf `

(p) , we have taken severa
precautions in order to obtain small error bars on thef L

(p) .
First, for any fixed value ofp, we use thesamerealization of
the disorder for the computations at different values ofT.
Second, for each strip of lengthM5105, we work in a ca-
nonical ensemble, meaning that disorder realizations
which the fraction of bondsJi j 5J does notexactlyequalp
for each J51,2, . . . ,q21 are discarded. Third, for eac
strip we averagef L

(p) over up to 105 independent realizations
In Table I we show the resulting values ofc and the in-

verse temperatureb51/T at the FP boundary. The two-poin
fits are based directly on Eq.~11!, while the three-point fits
include an additional nonuniversal 1/L4 correction@12#. The
existence of an attractive fixed point atp;0.04 with a cen-
tral charge slightly larger thancpure54/5, characterizing the
pure three-state Potts model, is brought out very clearly.

The reader may wonder why data for such small sys
sizes can possible give any reliable information about
thermodynamic limit. Comparison with the pure modelp
50) shows however that in particular, the three-point
converge very rapidly towards the exact resu
c3,450.768 03, c4,550.780 43, c2,3,450.794 31, c3,4,5
50.79831@17#. We have extrapolated the data at the fix
point F by assuming that for each fit, the relative deviati
from the infinite-size result is the same as in the pure mo
In this way, we arrive at the final result

cF50.802 5~10!, ~12!

which compares favorably with the perturbative resultcpert
54013/50001O(q22)5'0.8026@7# for the ferromagnetic
RBPM.
02611
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To numerically locate the Nishimori point, we measu
ceff along the Nishimori line. Since in this casep is a func-
tion of b @see Eq.~5! with K5b# we can no longer work in
the canonical ensemble of disorder realizations. Accordin
our error bars are larger. It is however a big advantage
know the exact parametrization of the Nishimori line, sin
otherwise we would have had to scan a two-dimensio
manifold of parameter values@18#.

From the data in Table II we conclude that the fixed po
N is located atpN50.078 5(10). Using the same extrapol
tion procedure as above, we also estimate

cN50.756~5!. ~13!

This is in remarkable agreement with the value of the cen
charge for the percolation limit in the RBPM:c
55A3lnq/4p'0.7571 @12#. Below, we shall return to the
question whether the Nishimori point is ‘‘just’’ percolation

We have also measured magnetic multiscaling expon
hn , which, after a conformal mapping@5#, are defined on the
semi-infinite cylinder of circumferenceL, with xP@1,L# and
yP@2`,1`#, by

@^S~x1 ,y!S~x2 ,y!&n#}FsinS p~x22x1!

L DLG2hn

. ~14!

For a pure system,hn5n3h, while for percolation over
Potts clusters allhn coincide. The principal goal here is t
establish the nontrivial multiscaling atN, rather than to de-
termine thehk with extraordinary precision. The largest sy
tem size employed wasL512, and we approximate th
semi-infinite cylinder by taking a length ofM5400L. All
runs were averaged over 103 disorder configurations.

In Fig. 2, we show effective values ofh1(L) along the
Nishimori line, for variousp close topN . These values were
obtained by fitting data for allx22x151, . . . ,L/2 to Eq.
~14!; to judge the systematic error due to the inclusion of
TABLE II. Effective central charge along the Nishimori line.

p L53,4 L54,5 L52,3,4 L53,4,5

0.077 0.7208~4! 0.7284~22! 0.7374~8! 0.739~6!

0.078 0.7212~5! 0.7346~27! 0.7374~10! 0.754~7!

0.079 0.7218~5! 0.7316~22! 0.7386~11! 0.746~6!

0.080 0.7213~7! 0.7292~24! 0.7379~14! 0.741~6!
3-3
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smallestDx[ux22x1u we also display a similar plot for or
dinary percolation, wherehperc55/24.0.2083 is known ex-
actly. At the fixed point,h1(L) must tend to a constant, an
we conclude thatpN50.07920.080 with h150.2020.21.
Discarding the smallestDx leads to consistent results, b
with larger error bars.

Although our value ofh1 is consistent with percolation
this scenario can be excluded by considering higher m
ments. E.g., forp50.080 andL512 we obtain

h150.212 39~35! h250.251 92~39!

h350.308 24~47! h450.337 73~52!, ~15!

FIG. 2. h1 extracted from Eq.~14! with Dx51, . . . ,L. We also
show the corresponding fit for percolation~full line! and the exact
valuehperc55/24.
,

.

02611
-

the corresponding values forp50.079 being some 6%
smaller.

Further evidence against percolation can be obtained
similarly considering the energy-energy correlations. In an
ogy with the RBIM case we associate this with a deviati
from N along thevertical direction on Fig. 1~b!. In this case,
the exponents depend less on the precise value ofpN , but the
finite-size corrections are larger. Extrapolating, we find
value of roughlyh1

e52.7522.85, rather close to the on
obtained for the RBIM Nishimori pointh1

e52.83(2) using a
similar fit @19#, and significantly larger than the percolatio
valuehperc

e 52(221/nperc)55/2. Discarding data with smal
Dx leads to larger error bars, but is still consistent withh1

e

;2.85. We have also verified that the energy correlatio
exhibit genuine multiscaling.

In conclusion, we have studied aq-state~Potts-like! gen-
eralization of the6J random-bond Ising model that allow
for the definition of a Nishimori line. Apart from a wea
disorder fixed point that coincides with that of the we
studied random-bond Potts model, the model possess
strong disorder point with multiscaling exponents differe
from those of percolation. The fixed-point structure is rem
niscent of that found by So”rensenet al. @18# in the context of
a 6J-like Potts model, which does however not possess
gauge symmetry required for defining a Nishimori line. W
believe that it would be interesting to study whether the cr
cal points of these two models are indeed identical. Op
questions concerning our model include the study of its ze
temperature limit, the possibility of reentrance, and of
behavior forq.4. It would also be interesting to examine
using a supersymmetric approach.

We would like to thank J. Cardy, A. Honecker, and
Pujol for useful discussions.
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