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Phase diagram and critical exponents of a Potts gauge glass
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The two-dimensionat-state Potts model is subjected t&Zg symmetric disorder that allows for the exis-
tence of a Nishimori line. Ag=2, this model coincides with the-J random-bond Ising model. Far>2,
apart from the usual pure- and zero-temperature fixed points, the ferro/paramagnetic phase boundary is con-
trolled bytwo critical fixed points: a weak disorder point, whose universality class is that détrmmagnetic
bond-disordered Potts model, and a strong disorder point which generalizes the usual Nishimori point. We
numerically study the casg=3, tracing out the phase diagram and precisely determining the critical expo-
nents. The universality class of the Nishimori point is inconsistent with percolation on Potts clusters.
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During the last decade, the study of disordered systems [(S.S.---S )" 1=[(S.S.---S )], 2)
has attracted much interest. This is true in particular in two vz : t? «
dimensions, where the possible types of critical behavior fowhere(- - -) denotes the thermal arjd- -] the disorder av-
the corresponding pure models can be classified using corrage. Since the Nishimori line is also invariant under renor-
formal field theory{ 1]. Recently, similar classification issues malization grougRG) transformation$3], its intersectiorN
for disordered models have been addressed through the stug§th the FP boundary must be a fixed point. However, the
of various random matrix ensembl€®], but many funda- widespread belief that the corresponding universality class is
mental questions remain open. of the percolation type has recently been refuted on the basis
An important category of two-dimension&2D) disor-  of numerical evidencgs].
dered systems is given by models where the disorder couples The other model of special interest to us is the random-
to the local energy density. Two paradigmatic members obond Potts modglRBPM), which is also defined by Eq1),
this class are thetJ random-bond Ising model, and the except that the spins now takg different values,S;
g-state ferromagnetic random-bond Potts model. The modek 1,2, . .. g. The most well-studied case is that of ferromag-
to be studied in the present paper can be thought of as ametic bondsl;,J,>0, each taken with probability 1/2, and
interpolation between these two members; we shall thereforgith R=J,/J,=1 adjusting the disorder strength.

begin by recalling some of their basic properties. In contradistinction to the Nishimori point, the fixed point
The random-bond Ising modéRBIM) is defined by the  of this model is situated at weak disorder. Fpr2 the dis-
energy functional order is relevan{6], and the corresponding line of fixed

points tends to the one of the pure Ising model in the limit
g—2. As a consequence, the critical exponents can be com-
Hising= — > 3i;8(S,S)), (1) puted perturbatively in agq—2) expansiori7]. According to
D the RG picture, forq>2, any small amount of disorder
should induce a flow towards the random fixed point. That
where the sum is over the edges of the square latBge, this is also true foig>4, where the phase transition in the
==*1 are Ising spins, and(.,.) is theKronecker delta func- pure model is of the first order, is the content of the
tion. The random bonds take the valugs= =1 with prob-  Aizenman-Wehr theoreri8].

ability p, respectively, +p. The salient feature of this In this paper, we shall consider the model

model is that it marries disorder with frustration, leading to

the possibility of spin glass order. H=— sO(s—-8+J. 3
Its phase diagram is generally believed to be as in Fig. @zw (=5, &

1(a) [3]. The boundaryFP) between the ferromagnetic and

the paramagnetic phases is controlled by three fixed points T
The attractive fixed points at either end of the phase bound T,
ary are, respectively, the critical point of the pure Ising
model and a zero-temperature fixed point. Between these twi )
we find the multicritical pointN, intersecting the so-called
Nishimori line €= (1—p)/p [4]. On this line, the replicated
version of the model possesses a logalgauge symmetry

that, among other things, allows for exactly computing the
internal energy and for establishing the pairwise equality of FIG. 1. Phase diagram of theJ random-bond Ising modéh)
correlation functions and theq>2 state Potts gauge glads.
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where $=1,2,... 4, and §@(x)=1 if x=0modq and

zero otherwise. The randomness now takes the form of a E=Ng VY Y 5@(S-5+J;)e F"

local “twist” Jj;, which is clearly a more severe type of Ui (S

disorder than simple bond randomness. The variah|eare P PN

taken from the distribution =NgN—> (ef+qg-1)N=——. (8
a1 {si} q—1+ef

P(Jij=[1-(a=1)p]o(J;) + p;l 6(ij=9). () Thys,Eis regular, and Eq5) with K =3 defines the gener-
alized Nishimori line.
with 0<p=1/(q—1) controlling the strength of the random-  Normalized two-point functions are defined by
ness. We shall refer to this model, which was originally in-
troduced in Ref[9], as the Potts gauge glaé8GG). The (SS)=(q—1) " (s (S-5))—-1). ©)
particular form of the randomness ensures the existence of a )
Nishimori line (see below. For q=2, the PGG reduces to Let us now recall how Eq(2) can be derived fog=2.
the RBIM, and forp=1/q it was studied analytically ifi10]. ~ We considern=1 for simplicity. Using the trivial iden-
It is also connected to the RBPM: To wit, whep-2, the  tities §P(AS—Ao)=3756@(AS-1)56@(Ac+]) and
pure Potts model g=0) should beunstableto a small S{_g8@(AS—1)=1, one readily establishes that
amount of randomness, meaning that the RG flow cannot bad @(AS—Ag)—1=(25?(AS)—-1)(26 P (Aa)—1)
as indicated on Fig. (4). Instead, we are forced to assume and, using the same gauge transformation as before,
the existence of a new fixed poiftt intermediary between
the pure model and the Nishimori poifgee Fig. 1b)]. But [2(6(S—9))—1]=[(2(sP(S—S))—1)?].
whenever ¢—2), and hence the value @f at F, is suffi- (10
ciently small, frustration effects are negligible, and we_ . _ ) A )
should flow to thesamerandom fixed point as in the RBPM. 'I_'h|s relies crucially on the fact that the above trivial identi-
For reasons of continuity, we expect this argument to holdi€S generate only two terms, and for geneyale do not
true a|so for h|gher Values mf eXpeCt Slmple relations such as Ea)l
The expression of the Nishimori line was obtained in Ref. We now turn to our numerical results. Random transfer

[9], but since our notation is slightly different we shall repeatmatrices in the Fortuin-Kasteley{FK) representatiorj11]

the argument here. We first re-express the disorder distrib1ave been a very powerful tool for studying the RBP1NZ].
tion as Unfortunately, the random twist variabldg present in Eq.

(3) complicate the definition of the FK clusters: only those
P(J;j)= peKﬁ(q)(Jij) with K=log[1/p—(q—1)]. (5)  clusters are allowed for which, J;;=0 modq for any path
v within the clustef13]. It is not obvious how this constraint
Consider then the disorder averaged internal energy can be generalized teal values ofg, and even for integey
keeping track of the necessary local information would
greatly increase the number of basis states needed. We have

(@(g—g Ve BH . . .
2 (S SJJ“]'J)e therefore found it more convenient to write the transfer ma-

EZNE (H eKﬁ(‘”(Ju‘)> il , trices directly in the spin basis. We work@#t 3 throughout,
{3\ () 2 o BH but expect our conclusions to extend to arbitrgey2.
(s As we have shown in an earlier publicati¢h4], the

(6) phase diagram can be traced out by investigating the effec-
tive central charge. To this end we have computed the free

where V= —1/(q—1+€*)?N, N being the number of sites energy (P =InZ®/LM on strips of various width4. and
of the square latticeH is then invariant under the gauge practically infinite length,M =10°. The (effective central
transformatior§— S§,— oy ,J;;—Jj; + 0;— o, thoughP(J;;)  chargec can then be obtained as the universal coefficient of
is not. Still, E is invariant since we sum over all configura- the finite-size correction to the free energy for periodic
tions of the disorder. Then, averaging over all the possibléoundary condition§15]
gauge transformations, we get

EZN-q—NE E H eKa(Q)(Jijmi—aj)
{3t {oid \ (i)

cm
fP—f0+ D (11)

According to Zamolodchikov's theorem[16], here applied

6(‘1)(3—8- +Ji)e A to a nonunitary theory, the ef.fec.tive central chamyereases
s o along the RG flows and coincides with tffgue) central
X . (7)
E eﬁﬁ(q)(sif—Sjr+Jifjf)
{si i'j"y 1A simple relation for a chiral-type correlator was established in
Ref.[9], but in terms of Eq(9) this does not lead to degeneracy in
ImposingK = B, there is a remarkable simplification the multiscaling spectrum.

026113-2



PHASE DIAGRAM AND CRITICAL EXPONENTS OF A. .. PHYSICAL REVIEW 65 026113

TABLE |. Parametrization of the ferro/paramagnetic phase boundary.

L=3/4 L=45 L=2,34 L=3,4,5
P B c B c B c B c
0.01 1.05215) 0.76825%3) 1.052@5) 0.780749) 1.052@5) 0.7946@6) 1.0520Q5) 0.79873)
0.02 1.10615) 0.768746) 1.10615) 0.7815%2) 1.10615) 0.79531) 1.10615) 0.79986)
0.03 1.16925) 0.769079) 1.16915) 0.78162) 1.16925) 0.79572) 1.16915) 0.79976)
0.04 1.2441) 0.768%1) 1.2471) 0.78227) 1.2441) 0.79513) 1.2481) 0.802@17)
0.05 1.3361) 0.76633) 1.33712) 0.77999) 1.3361) 0.79256) 1.3381) 0.799525)
0.06 1.4582) 0.7620Q3) 1.4562) 0.773911) 1.4542) 0.78826) 1.4562) 0.791130)
charge at the fixed points. The FP boundésfy Fig. 1) can To numerically locate the Nishimori point, we measure
be traced by identifying the maximum ofas a function off,  c.; along the Nishimori line. Since in this capds a func-
for various fixed values op. tion of B [see Eq(5) with K= 8] we can no longer work in
Since the randomness is strong, and since the fits to Eghe canonical ensemble of disorder realizations. Accordingly
(11) must be based on at least two different sikes elimi-  our error bars are larger. It is however a big advantage to

nate the nonuniversal quantif§® , we have taken several know the exact parametrization of the Nishimori line, since

precautions in order to obtain small error bars on tffé.  otherwise we would have had to scan a two-dimensional

First, for any fixed value of, we use thesamerealization of ~manifold of parameter valug48].

the disorder for the computations at different valuesTof From the data in Table Il we conclude that the fixed point

Second, for each strip of lengttl =10°, we work in a ca- N is located afpy=0.0785(10). Using the same extrapola-

nonical ensemble, meaning that disorder realizations fotion procedure as above, we also estimate

which the fraction of bonds;;=J does notexactlyequalp

for eachJ=1,2,...9—1 are discarded. Third, for each cn=0.7565). (13)

strip we averagé(,_p) over up to 18 independent realizations.
In Table | we show the resulting values ofand the in-

verse temperaturg=1/T at the FP boundary. The two-point

fits are based directly on E¢l1), while the three-point fits

include an additional nonuniversalLf/correction[12]. The

existence of an attractive fixed point @t-0.04 with a cen- ) - .
tral charge slightly larger thaa,,.=4/5, characterizing the 7n- which, after a conformal mappiri§], are defined on the

pure three-state Potts model, is brought out very clearly. Semi-infinite cylinder of circumferends, with xe[1L] and
The reader may wonder why data for such small systenY €[ —=,+ =], by

sizes can possible give any reliable information about the

thermodynamic limit. Comparison with the pure model ( Mo
=0) shows however that in particular, the three-point fits (S0 ¥)S0x2 ¥))"
converge very rapidly towards the exact result:

C34=0.76803, c,5=0.78043, C,3,=0.79431, c3,5 FOr a pure systemp,=nXgz, while for percolation over
=0.79831[17]. We have extrapolated the data at the fixedPotts clusters allp, coincide. The principal goal here is to
point F by assuming that for each fit, the relative deviationestablish the nontrivial multiscaling &, rather than to de-
from the infinite-size result is the same as in the pure modekermine thes, with extraordinary precision. The largest sys-

This is in remarkable agreement with the value of the central
charge for the percolation Ilimit in the RBPMc
=5.3Ing/4m~0.7571[12]. Below, we shall return to the
guestion whether the Nishimori point is “just” percolation.
We have also measured magnetic multiscaling exponents

— 7

- 14

sin( —w(xz—xl)) L

In this way, we arrive at the final result tem size employed wat =12, and we approximate the
semi-infinite cylinder by taking a length d¥l =400_. All
ce=0.802510), (12 runs were averaged over 3@isorder configurations.

In Fig. 2, we show effective values af;(L) along the
which compares favorably with the perturbative resiyt;  Nishimori line, for variousp close topy . These values were
=4013/5006- O(q—2)°~0.8026[7] for the ferromagnetic  obtained by fitting data for alk,—x;=1,...L/2 to Eg.
RBPM. (14); to judge the systematic error due to the inclusion of the

TABLE Il. Effective central charge along the Nishimori line.

p L=3,4 L=45 L=2,34 L=345
0.077 0.7208%) 0.728422) 0.73748) 0.7396)
0.078 0.721%5) 0.734627) 0.737410) 0.7547)
0.079 0.7216) 0.731622) 0.738611) 0.7466)
0.080 0.7218) 0.729224) 0.737914) 0.7416)
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S L e B I B B B L the corresponding values fogp=0.079 being some 6%
- _gP70.081 smaller.
i e ] Further evidence against percolation can be obtained by
0.22 - - similarly considering the energy-energy correlations. In anal-
r ] ogy with the RBIM case we associate this with a deviation
r _;_Pp=0.080 1 from N along thevertical direction on Fig. 1b). In this case,
021 , —="" " 4 the exponents depend less on the precise valpg pbut the
T v ] finite-size corrections are larger. Extrapolating, we find a
C ] value of roughly »7=2.75-2.85, rather close to the one
0.2 - R e — obtained for the RBIM Nishimori poing;=2.83(2) using a
I S p=0.079" 7 similar fit [19], and significantly larger than the percolation
r ] value 75 = 2(2— 1/vpe,d =5/2. Discarding data with small
019 = 1 et P=0.078 u Ax leads to larger error bars, but is still consistent with
N T S ~2.85. We have also verified that the energy correlations
6 8 10 12 exhibit genuine multiscaling.

In conclusion, we have studiedogstate(Potts-like gen-
eralization of thexJ random-bond Ising model that allows
for the definition of a Nishimori line. Apart from a weak
disorder fixed point that coincides with that of the well-
studied random-bond Potts model, the model possesses a
strong disorder point with multiscaling exponents different
from those of percolation. The fixed-point structure is remi-

FIG. 2. », extracted from Eq(14) with Ax=1, ... L. We also
show the corresponding fit for percolati¢full line) and the exact
value 7pe= 5/24.

smallestAx=|x,—Xx,| we also display a similar plot for or-
dinary percolation, wherey,e,.= 5/24=0.2083 is known ex-

actly. At the fixed point,,(L) must tend to a constant, and njiscent of that found by Senseret al.[18] in the context of
we conclude thapy=0.079-0.080 with 7;=0.20-0.21. 3 + J-like Potts model, which does however not possess the
Discarding the smalleshx leads to consistent results, but gauge symmetry required for defining a Nishimori line. We
with larger error bars. believe that it would be interesting to study whether the criti-
Although our value ofp; is consistent with percolation, cal points of these two models are indeed identical. Open
this scenario can be excluded by considering higher moguestions concerning our model include the study of its zero-
ments. E.g., fop=0.080 and_=12 we obtain temperature limit, the possibility of reentrance, and of its
behavior forg>4. It would also be interesting to examine it
using a supersymmetric approach.

We would like to thank J. Cardy, A. Honecker, and P.
Pujol for useful discussions.
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